TENSOR PRODUCTS OF MAXIMAL ABELIAN SUBALGBERAS OF C*-ALGEBRAS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Products of Maximal Abelian Subalgberas of C*-algebras

It is shown that if C1 and C2 are maximal abelian self-adjoint subalgebras (masas) of C*-algebras A1 and A2, respectively, then the completion C1 ⊗ C2 of the algebraic tensor product C1 ⊙ C2 of C1 and C2 in any C*-tensor product A1 ⊗β A2 is maximal abelian provided that C1 has the extension property of Kadison and Singer and C2 contains an approximate identity for A2. Examples are given to show...

متن کامل

On the Tensor Products of Maximal Abelian JW-Algebras

It is well known in the work of Kadison and Ringrose 1983 that if A and B are maximal abelian von Neumann subalgebras of von Neumann algebras M and N, respectively, then A⊗B is a maximal abelian von Neumann subalgebra of M⊗N. It is then natural to ask whether a similar result holds in the context of JW-algebras and the JW-tensor product. Guided to some extent by the close relationship between a...

متن کامل

DERIVATIONS OF TENSOR PRODUCT OF SIMPLE C*-ALGEBRAS

In this paper we study the properties of derivations of A B, where A and B are simple separable C*-algebras, and A B is the C*-completion of A B with respect to a C*-norm Yon A B and we will characterize the derivations of A B in terms of the derivations of A and B

متن کامل

C*-algebras on r-discrete Abelian Groupoids

We study certain function algebras and their operator algebra completions on r-discrete abelian groupoids, the corresponding conditional expectations, maximal abelian subalgebras (masa) and eigen-functionals. We give a semidirect product decomposition for an abelian groupoid. This is done through a matched pair and leads to a C*-diagonal (for a special case). We use this decomposition to study ...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2008

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089508004151